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Abstract: Background: We have designed a prospective study aiming to monitor the immune
response in 178 health care workers six months after BNT162b2 mRNA vaccination. Methods: The
humoral immune response of all subjects was evaluated by chemiluminescence (CMIA); in 60 serum
samples, a live virus-based neutralization assay was also tested. Moreover, 6 months after vaccination,
B- and T-cell subsets from 20 subjects were observed by FACS analysis after restimulation with the
trimeric SARS-CoV-2 Spike protein as an antigen, thus mimicking reinfection in vitro. Results: A
significant decrease of circulating IgG levels and neutralizing antibodies over time were observed.
Moreover, six months after vaccination, a variable T-cell immune response after in vitro antigen
stimulation of PBMC was observed. On the contrary, the analysis of B-cell response showed a shift
from unswitched to switched memory B-cells and an increase of Th17 cells. Conclusions: Although
the variability of the CD4+ and CD8+ immune response and an antibody decline was observed among
vaccinated subjects, the increase of switched memory B-cells and Th17 cells, correlating with the
presence of neutralizing antibodies, opened the debate on the correct timing of vaccination.

Keywords: SARS-CoV-2; BNT162b2 mRNA vaccine; humoral immunity; cellular immunity; fuzzy system

1. Introduction

After the global diffusion of the severe acute respiratory infectious disease caused
by the SARS-CoV-2 virus (COVID-19) in 2020, the World Health Organization (WHO)
declared a pandemic status. Up to now, millions of COVID-19 cases have been confirmed
worldwide (WHO, 2021) [1]. Considering its rapid spread, pharmaceutical industries
promptly started intensive work to develop specific and efficacious vaccines, thanks to
government support. The BNT162b2 mRNA vaccine (Pfizer-BioNTech) was the first vaccine
available in Italy to prevent COVID-19 [2,3]. BNT162b2 is a lipid nanoparticle formulated
nucleoside-modified messenger RNA (mRNA), encoding SARS-CoV-2 spike (S) protein,
stabilized in the prefusion conformation [4]. Results from clinical trials showed that up to
6 months of follow-up and despite a gradually declining trend in vaccine efficacy, BNT162b2
had a favorable safety profile and a 91.3% effectiveness against COVID-19 disease [3].

However, on the basis of published results, 10–22% of people immunized against
COVID-19, showing a steady decline of the humoral response [5], could present a major
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risk of breakthrough infection, particularly with variants [6]. Many studies have been
conducted on the duration of immunity after natural infection by SARS-CoV-2 [7], and
results have been produced concerning the persistence of the antibody response over time
and the durability of the cell-mediated immune response, in particular memory B and T
cells, after two doses of vaccine [6,8–10].

Therefore, we designed a prospective study (MOTIVE study), (aiming) to explore
and monitor the humoral immune response induced by the BNT162b2 mRNA vaccine in
178 vaccinated volunteers, (ii) to examine the memory B- and T-cell responses after the
second BNT162b2 mRNA vaccine boost, and (iii) to run predictor models for the presence of
a good protective antibody response against SARS-CoV-2. It is of primary interest to know
the real correlates of protection from COVID-19 vaccines therefore a deeper knowledge of
the type of immunity and its duration after vaccination could help to understand whether
and when it is necessary to initiate further jabs and improve the vaccine performance
against variants.

2. Materials and Methods
2.1. Study Design and Participants

In this current observational cohort study, we enrolled 178 volunteers among health-
care workers (HCWs): 61 males and 117 females from ‘Santa Maria alle Scotte’ University
Hospital in Siena, who had been subjected to periodical control (every 2 weeks) by molecu-
lar testing for SARS-CoV-2 virus with a nasopharyngeal swab and had never been infected.
All subjects were vaccinated with two doses of BNT162b2 mRNA Vaccine (Pfizer Inc.,
New York, NY, USA) between 27 December 2020 and 31 January 2021. Among them, only
53 randomly selected subjects were screened 10 days after receiving the first dose of the
vaccine. Then, blood samples were drawn to all subjects 10 days, one, three, and six months
after the second dose of the BNT162b2 mRNA vaccine for humoral response analysis.
Cell-mediated immune response was also investigated six months after vaccination in
20 vaccinated subjects, randomly selected for their high (10 subjects, neutralizing antibody
titer one month after vaccination >64) or low (10 subjects, neutralizing antibody titer one
month after vaccination <64) antibody response.

All subjects gave their informed consent to participate in this study in accordance with
the principles of the Declaration of Helsinki. The study was approved by the local Ethical
Committee (ID 19290).

2.2. Anti-SARS-CoV-2 Spike IgG Antibodies

In order to evaluate the humoral response induced by the vaccine, a blood sample was
drawn from all HCWs 10 days, 1, 3, and 6 months after the second vaccine administration.
To this aim, whole blood samples were collected and centrifuged at 1600 g for 15 min
to separate the serum. Then they were stored at −20 ◦C until serological assays were
performed. Subjects’ sera were analyzed using an Abbott SARS-CoV-2 IgG II Quant assay
(Abbott Laboratories, Chicago, IL, USA), a chemiluminescent microparticle immunoassay
(CMIA) for evaluating the immune status of individuals with quantitative measurement
of IgG antibodies against the spike receptor-binding domain (RBD) of SARS-CoV-2. This
assay was performed on an Abbott Architect i2000 (Abbott Diagnostics), according to the
manufacturer’s instructions. The cut-off value was 50.00 AU/mL. A sample was considered
positive when the result was >50.0 AU/mL.

2.3. Microneutralization Assay

SARS-CoV-2 virus neutralization assay was carried out on Vero E6 cells (ATCC®

CRL-1586™) in a 96-well microplate (COSTAR, Corning Incorporated, Corning, NY, USA).
Twenty-five microliters of two-fold serial dilutions (1:8 to 1:1024) of sera samples were
added to an equal volume of the SARS-CoV-2 strain (SARS-CoV-2/human/ITA/Siena-
1/2020; GenBank: MT531537.2), containing 100 TCID50 and incubated for 90 min at 37 ◦C.
Finally, 50 µL of Vero E6 cells suspension (2 × 105 cells/mL), prepared in complete DMEM,
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was added to each well. After 72 h of incubation at 37 ◦C, cultures were daily examined
for the presence of CPE under a microscope (Olympus IX51). The 50% endpoint titer was
calculated using the Reed–Muench method [11]. A positive and negative control serum
was included in each assay. Geometric mean titers (GMTs) of the neutralization assays were
calculated. Serum from the National Institute for Biological Standards and Control, Blanche
Lane, Ridge, Herts, UK (NIBSC) with known neutralization titer (Research reagent for
anti-SARS-CoV-2 Ab NIBSC code 20/130) was used as a reference in MNTSera of subjects
collected before 2019 were used as negative controls.

2.4. Peripheral Blood Mononuclear Cells Isolation and Stimulation

For the evaluation of the B- and T-cell response after stimulation with the Spike pro-
tein, peripheral blood mononuclear cells (PBMCs) were isolated from 20 selected subjects’
whole blood and three unvaccinated, uninfected negative controls, using Lympholyte®

Cell Separation Media (Cedarlane, Burlington, ON, Canada; Cat# DVCL5015). Afterwards,
PBMCs were washed with RBC (Red Blood Cell) lysis buffer and seeded in quadruplicate
at a concentration of 1 × 106 in 500 µL in 24-well plates in RPMI-1640 medium (Euroclone,
Milan, Italy; Cat# ECB2000), supplemented with 10% heat-inactivated human serum (Euro-
clone, Milan, Italy; Cat# ECS5000L). Thereafter, IL-2 (20 U/mL), IL-10 (50 ng/mL), GM-CSF
(50 ng/mL), and IL-4 (0.5 ng/mL) were added to each well and cells were incubated at
37 ◦C with 5% CO2. After 48 h, Trimeric recombinant Spike protein (Leinco Technologies,
Inc, St. Louis, MO, USA; Cat# S848) was added in two wells (for B- and T-subsets analysis,
respectively) for each subject at a concentration of 5 µg/mL, while the other two wells were
kept as unstimulated control cells. T- and B-cell populations were analyzed 24 h and 96 h
after antigen stimulation, respectively. Responsiveness of each sample was assessed by
stimulation with 5 µg/mL of phytohaemagglutinin (PHA) (Roche Diagnostics, Germany;
Cat# 11249738001). After 24 h, cells were harvested and analyzed by flow cytometry.

2.5. Multiparameter Flow Cytometry Analysis

T- and B-cell subsets were stimulated in vitro for 24 and 96h with the recombi-
nant Spike, respectively. Afterwards, PBMCs of 20 selected HCWs were harvested and
washed, using PBS supplemented with 3% FCS, then stained with a fixable viability dye
(LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit, Thermo Fisher Scientific, Waltham, MA,
USA; Cat# L34957) for 20 min at 4 ◦C.

Surface staining with antibodies binding to CD3 (clone SK7), CD4 (clone SK3), CD8
(clone RPA-T8), CCR7 (clone 150503), CD45RA (clone HI100), CD38 (clone HIT2), HLA-DR
(clone G46-6), CXCR3 (clone 1C6) and CCR6 (clone 11A9) for the analysis of T-helper
and memory panels and with CD3 (clone SK7), HLA-DR (clone G46-6), CD19 (clone
HIB19), CD27 (clone L128), IgD (clone IA6-2), CD20 (clone 2H7), CD24 (clone ML5), and
CD38 (clone HIT2) for the analysis of B memory cells panel, according to manufacturer’s
instructions. All antibodies were supplied from BD Biosciences (New York, NY, USA).
After fixation with PBS + 2% paraformaldehyde for 20 min at 4 ◦C, cells were washed and
resuspended in PBS, supplemented with 0.5 mM EDTA before being acquired with SO
LSRFortessa X20 flow cytometer (BD Biosciences, New York, NY, USA). Data analysis was
performed using FlowJo v10 (TreeStar, Ashland, OR, USA).

2.6. Interferon-γ Quantification

Covi-FERON FIA (IFN-gamma/IFN-γ) (SD, BIOSENSOR), a fluorescent immunoassay,
was used to quantify the interferon-γ production in the 20 selected subjects’ whole blood six
months after vaccination. Briefly, heparinized whole blood of each subject was incubated
O/N at 37 ◦C in different blood collection tubes, which were antigen-sensitized. These tubes
included: SARS-CoV-2 specific proteins tubes, Nil tube (Negative Control) and Mitogen
tube (Positive Control). After centrifugation at 2300 g for 15 min, plasma was harvested
and tested for the presence of IFN-γ, produced in response to the specific antigens by FIA.
Results of each sample were automatically calculated in the analyzer. The concentration of
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IFN-γ was provided as IU/mL. The test was considered valid if the Nil value was ≤8.0 and
the Mitogen value greater than the Nil value by at least 0.5 IU/mL. Results were interpreted
as described by the manufacturer’s instructions.

2.7. Statistical Analysis

Differences among age, sex, circulating IgG levels, and neutralizing geometric mean
titers (GMTs) were evaluated, and statistical significances were assessed with a two-tailed
chi-square test. Results were considered statistically significant at p < 0.05. For each variable,
a 95% confidence interval (95% CI)as calculated and reported. All analyses were performed
by using Graph Pad Prism software (v.7.0). To represent data and to perform result
comparisons, each single cell population analyzed by cytofluorimetry was normalized to
the total amount of cells of interest for the specific subset of the cell population. After
normalization, the obtained data were considered in terms of the relative difference between
cells that had been non-exposed or exposed to SARS-CoV-2 Spike protein in order to
investigate variations in cell counts after one (for T cells) or four days (for B cells) of antigen
stimulation. CD4+ CM represents the Central memory population, normalized with respect
to total CD4+ counted cells, CD4+ EM are the effector memory population, normalized
with respect to total CD4+ counted cells as well as Th17 cells. CD8+ CM and CD8+ EM
are the central and effector memory cells normalized for the CD8+ population. Finally, the
naïve, transitional, memory switched, and unswitched cells were normalized to the overall
amount of B-cells for each subset of the cell population. Considering the fuzzy algorithm
implemented, the authors used the Fuzzy MATLAB Toolbox and exploited the Mamdani
model.

2.8. Limitations

This study has some limitations: the in vitro neutralization and stimulation assays
were performed only with the WT virus since, at the beginning of this study, it was the only
circulating strain.

In addition, another limitation could be represented by the low number of subjects
analyzed for the T-cell response, mainly due to the complexity of the protocol used.

3. Results
3.1. Monitoring of Humoral Response after Vaccination

We analyzed sera from 178 healthcare workers, 61 males (34.2%; mean age 45.8 years,
CI 95% 42.6–49.1) and 117 females (65.8%; mean age 44.4 years, CI 95% 42.1–46.6) who had
never been infected by SARS-CoV-2 10 days, one month, three months, and six months
after the second dose of BNT162b2 mRNA vaccine (Figure 1). Only two out of 53 randomly
selected subjects, who were screened for the presence of specific IgG after the first dose of
vaccine, were seronegative (3.8%), while all 178 HCWs were positive 10 days, one month,
and three months after the second administration.

Results showed a significant difference in overall titers between 10 (21,394.9 AU/mL;
CI 95% 19,600–23,200) and 30 (13,523.1 AU/mL; CI 95% 12,100–14,900), with an evident
IgG decrease (36.64%) one month after vaccination (p < 0.0001). A similar decreasing
pattern of circulating antibodies was observed both three months (4063.2 AU/mL; CI 95%
3600–4530, p < 0.0001 compared with results after 30 days) and six months (1431.6 AU/mL;
CI 95% 1260–1,600, p < 0.0001 compared with results after three months) after the vaccine
administration.

Antibody titers decayed over six months but remained detectable in all subjects, but
two, who were previously tested positive. These data were confirmed by the decline of
neutralizing antibodies.
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Figure 1. Differences in circulating IgG antibodies between the different time samplings after re-
ceiving the second vaccine administration reported as IgG titer in AU/mL. Results are reported in
the box-whisker plots as median IgG and upper and lower quartiles. Differences in antibody titers
were evaluated, and the statistical significance was assessed using the two-tailed chi-square test.
Results were considered statistically significant at p < 0.05. Analyses were performed by using Graph
Pad Prism software (v.7.0). Among the study group, 60 subjects were screened for the presence of
specific neutralizing antibodies against SARS-CoV-2, 10 days, 1, 3, and 6 months after the second
vaccine administration. The test was performed by assessing the protective activity of the humoral
response against the live SARS-CoV-2 virus. Results did not show a significant difference (p = 0.08)
in the antibody response, in terms of GMT 10days (GMT = 108.70) or 30 days (GMT = 91.50) after
vaccination (Figure 2). However, in the following months, the decline of neutralizing antibodies was
consistent, with a significant decrease both three months (GMT = 32.4; p < 0.0001 vs. 30 days) and six
months (GMT = 17.5; p < 0.0001 vs. three months) after the vaccine administration.
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Figure 2. Differences in neutralizing antibody titers (GMT) among the different time samplings after
receiving the second vaccine administration. Results are reported in the box-whisker plots as median
GMT and upper and lower quartiles. GMT, geometric mean titer. Differences in antibody titers were
evaluated, and the statistical significance was assessed using the two-tailed chi-square test. Results
were considered statistically significant at p < 0.05. Analyses were performed by using Graph Pad
Prism software (v.7.0).
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Finally, to better analyze the declining trend of neutralizing antibodies over time, we
assessed the antibody profile of each subject. While those having a GMT > 128 (30 subjects)
after 10 days showed a GMT decrease after 30 days (86.7%), the remaining (30 subjects),
having a GMT < 128, behaved more heterogeneously. Seven of them (23.3%) showed a
reduction in GMT, 17 (56.7%) developed a higher antibody titer, and 6 (20%) remained
stable (Table 1).

Table 1. Neutralizing antibody profiles 1, 3 and 6 months after the second dose of vaccination in
60 subjects compared with the antibody response developed at 10 days.

Neutralizing Antibody GMT > 128 at 10 Days Post-Vaccination Neutralizing Antibody GMT < 128 at 10 Days Post-Vaccination

1 Month 3 Months 6 Months 1 Month 3 Months 6 Months
Ab level increase

average 2 (6.66%) + 21.7% 0 0 17 (56.66%) + 22.0% 0 0

Ab level stability 2 (6.66%) 0 0 6 (20.0%) 0 0
Ab level decrease

average 26 (86.66%) − 28.6% 30 (100%) − 70.7% 30 (100%) − 86.5% 7 (23.33%) − 6.8% 30 (100%) − 58.7% 30 (100%) − 76.9%

However, those having a higher GMT soon after vaccination showed a more pro-
nounced decrease of neutralizing antibodies over time, suggesting that a leveling of anti-
body titer had occurred in all subjects over time (Table 1).

3.2. Cell-Mediated Immune Response to SARS-CoV-2 mRNA Vaccine

In addition to the analysis of the specific antibody developed in vaccinated subjects six
months after vaccination, we analyzed the B- and T-cell immune responses in 20 subjects.
We selected 10 subjects having a low neutralizing antibody response (<64) and 10 having a
high antibody response (>64) one month after complete vaccination in order to investigate
whether this parameter could correlate with a typical cell-mediated immune response.
Three negative controls, represented by subjects who were not infected by SARS-CoV-2
and were not vaccinated, were also included.

We assessed the variation of the percentage of specific B- and T-cell populations
between the basal level without antigen stimulation and the one induced by stimulation
with the Spike antigen, as described in Section 2.4, in order to mimic the real-life event.

We analyzed CD4+ central memory (CM CD45RA− CCR7+), CD4+ effector mem-
ory (EM CD45RA− CCR7−), CD4+ Th17 (CXCR3 CCR6+), CD8+ central memory (CM
CD45RA− CCR7+), CD8+ effector memory (EM CD45RA− CCR7−), naïve B (CD19+

CD27− IgD+), transitional B (CD19+ CD27− IgD+ CD24high CD38high), unswitched memory
B (CD19+ CD27+ IgD+), and switched memory B cells (CD19+ CD27+ IgD−). CD4+ and
CD8+ naïve (CD45RA+ CCR7+) and effector memory cells re-expressing CD45RA (TEMRA
CD45RA+ CCR7−) together with CD4+ Th1 (CXCR3+ CCR6−) and Th2 (CXCR3− CCR6−)
helper cells were also analyzed, but no difference was recorded (data not shown). Full
gating procedures are provided in Supplementary Materials Figures S1 and S2. As shown in
Figure 3, wide variability was observed in T-cell response, indeed low and high responders
did not show a relevant difference in behavior. An increasing trend of CD4+ and CD8+

effector memory cells after Spike stimulation was noted, however, without a significant dif-
ference (>0.05). On the contrary, an increase of Th17 cells was surprisingly evidenced upon
stimulation with the Spike protein in low and high responders. This subset of CD4+ cells
produces several effector molecules, including IL-21, which stimulates B-cell differentiation
and antibody class switching [12]. This feature correlates with the data clearly shown in
Figure 3, where the unswitched memory B-cell differentiated in switched memory cells
after exposure to the Spike, indicating that also people with a low neutralizing antibody
titer could have a good memory B-cell immune response if reinfected with SARS-CoV-2.
This relative variation is better represented in Figure 4, where only two out of twenty
responders had a high level of unswitched and switched memory B cells, and one did
not show any variations. The remaining samples, both from low and high responders,
presented a shift to switched memory B-cells after antigen exposure. One of the controls
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developed a weak variation in switched memory B cells, which might be attributable to a
partial cross-reactive immunity to the common cold human coronaviruses.

Finally, we found an interesting correlation between Th17 cells and neutralizing
antibodies to SARS-CoV-2. Figure 5 show that all samples had a positive percentage of
Th17 variation corresponded to subjects having neutralizing antibodies; only five low
responders (NT antibody titer <20 after one month) and a high responder (red circle in
Figure 5) did not present a positive variation of Th17 after six months. A cut-off could be
set with an NT value of 19.5.

Moreover, the transitional B-cells showed an increase after Spike stimulation, sug-
gesting their role as developmental intermediates for human mature B-cell generation
(Figure 6). We did not include the analysis of naïve and TEMRA cells in Figure 3 since no
difference was evidenced between the stimulated and un-stimulated samples.

3.3. Fuzzy System

On the basis of these results, we tried to design an automated method based on a
fuzzy algorithm that could provide a prognostic tool [13,14]. New computing methods
based on fuzzy logic can be used in the development of intelligent systems for decision
making, pattern recognition, and control. Figure 7 show the prediction probability of
being a high/low responder with respect to an increase of Th17, which is always related to
the presence of a good protective antibody response against SARS-CoV-2. The algorithm
matches different membership functions designed to describe the likelihood of activating
certain probability areas. When both Th17 and NT values are low, the chance to be a high
responder is very low and close to zero.
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T cell populations: CD4+ CM (central memory, CD45RA− CCR7+), CD4+ EM (effector memory,
CD45RA− CCR7−), CD4+ Th17 (CXCR3− CCR6+), CD8+ CM (central memory, CD45RA− CCR7+),
CD8+ EM (effector memory, CD45RA− CCR7−). B-cell populations: B naïve (CD19+ CD27− IgD+),
B transitional (CD19+ CD27− IgD+ CD24high CD38high), B MUnsw (memory unswitched CD19+

CD27+ IgD+), and B MSw (memory switched CD19+ CD27+ IgD−).
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3.4. Interferon-γ Production by SARS-CoV-2 Specific T Cells in the Whole Blood

As described in Section 2.6, a technically simple and rapid alternative to Elispot
was performed to quantify the amount of interferon-γ in whole blood of the 20 previ-
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ously selected subjects six months after vaccination, after O/N stimulation with a pool of
SARS-CoV-2 peptides derived from the Spike amino acid sequence. A negative control,
represented by uninfected and unvaccinated subjects, was included in the test. Table 2 show
that 11 out of 20 subjects still had a Spike-specific T cell response, while both the 9 remaining
vaccinated subjects and the negative control did not present an interferon-γ production.
However, the amount of interferon-γ revealed in the responding subjects was correlated nei-
ther with the amount of specific CD4+ or CD8+ cells obtained by cytofluorimetric analysis
nor with their antibody level six months after vaccination.

Table 2. The table shows the CoviFERON FIA results of the 20 samples previously analyzed by
multiparametric flow cytofluorimetry.

N

CoviFERON FIA Results (IU/mL)

Nil Original SP
Antigen Mitogen Results Interpretation

1 <0.145 1.42 >10.00 1.28 Reactive
2 <0.145 4.55 >10.00 4.41 Reactive
3 <0.145 1.12 >10.00 0.98 Reactive
4 <0.145 0.17 >10.00 0.03 Non-Reactive
5 <0.145 1.76 >10.00 1.62 Reactive
6 <0.145 0.93 >10.00 0.79 Reactive
7 <0.145 0.24 >10.00 0.10 Non-Reactive
8 <0.145 <0.145 >10.00 0.00 Non-Reactive
9 2.38 2.23 >10.00 −0.15 Non-Reactive
10 <0.145 0.56 >10.00 0.42 Reactive
11 <0.145 1.34 >10.00 1.20 Reactive
12 <0.145 <0.145 >10.00 0.00 Non-Reactive
13 <0.145 1.08 >10.00 0.94 Reactive
14 <0.145 2.74 >10.00 2.60 Reactive
15 <0.145 1.17 >10.00 1.03 Reactive
16 0.63 0.89 >10.00 0.26 Non-Reactive
17 0.27 7.00 >10.00 6.73 Reactive
18 <0.145 0.22 >10.00 0.08 Non-Reactive
19 <0.145 <0.145 >10.00 0.00 Non-Reactive
20 <0.145 0.18 >10.00 0.04 Non-Reactive

CTRL <0.145 <0.145 >10.00 0.00 Non-Reactive

4. Discussion

In this study, the dynamic of the immune response six months after the BNT162b2
mRNA vaccine was analyzed. There are several articles in the scientific literature regarding
the immunity after SARS-CoV-2 natural infection [15–19] and on the duration of the im-
mune response after vaccination [4,9,10,20,21]. Here, we assessed the antibody response
of 178 HCWs without any history of SARS- CoV-2 infection by chemiluminescent and mi-
croneutralization assays 10 days, 1, 3, and 6 months after two doses of the BNT162b2 mRNA
vaccine. Only two out of the 53 randomly selected subjects, screened for the presence of
specific IgG after the first dose of vaccine, were seronegative (3.8%), while all 178 HCWs
were positive 10 days after the second dose. An antibody decline was observed over time,
comparing the IgG levels at different time points after the second dose of vaccine.

Similarly, the neutralizing antibody response among the subjects showing no signif-
icant difference in GMT 10 (GMT = 109.78) and 30 (GMT = 92.90) days post-vaccination
clearly declined in the following months. Indeed, a significant decrease in antibody re-
sponse was found three (GMT = 32.4; p < 0.0001 vs. 30 days) and six months (GMT = 19.4;
p < 0.0001 vs. three months) after vaccination (Figure 1).The NT antibody titer reached an
average of 19.4, likely representing the cut-off to confer protection against the Wuhan strain
of SARS-CoV-2 (19). Interestingly, we noticed that vaccinated subjects having a GMT > 128
10 days after the vaccine showed a slight decrease of the titer 30 days after, while those
having a GMT < 128 showed quite different behavior. Most of them (56.6%) developed



Vaccines 2022, 10, 171 11 of 13

a titer increase, a few (23.3%) showed a slight decrease, the remaining (20%) maintained
the same titer (Table 1). However, it appeared that a levelling of the neutralizing antibody
titer occurred over time, with a decreasing titer in subjects with a high amount of IgG
and a titer increase in those showing a low–modest IgG level. Neutralizing antibodies are
considered a good correlate of protection [22–24], and B-cells participate in the antiviral
immune response. We stimulated human PBMCs with the Spike protein in vitro in order
to understand whether a possible contact with SARS-CoV-2 in a vaccinated subject could
mount an adequate immune response to protect the host in case of reinfection. After
vaccination, memory B-cells capable of responding to a challenge were produced and dis-
tinguished in different subsets. This kind of response was present in all analyzed subjects,
both high and low responders. We noticed that unswitched memory B-cells (IgD+) shifted
to switched memory B-cells (IgD−) after in vitro stimulation with the Spike, indicating that
the immune system is ready to defend the host in case of virus attack. Indeed, memory B
cells play an important role in SARS-CoV-2 immunity and provide a good indication of
vaccine efficacy [25,26]. While naïve B-cells showed a variable profile, transitional B-cells
demonstrated a modest increase after antigen stimulation, particularly in high responders
(Figure 6). Transitional B-cell subsets, identified within the CD24highCD38high B population
display differential regulatory abilities. A subset of them is specialized in suppressing
the production of proinflammatory cytokines and has the capacity to produce high levels
of IL-10, which enhances B-cell survival, proliferation, and antibody production, thus
providing support to the reported increase of memory B-cells. However, the biology of
transitional B-cells still remains controversial [1]. Finally, we found a good correlation
between Th17 cells after Spike stimulation and the presence of neutralizing antibodies.
Th17 cells have a role in supporting B-cell responses. Indeed, under polarizing conditions,
these cells can activate T-cells to support the expansion of B-cells and an enhanced antibody
response [12,27,28]. In this study, we found that all high responders had an increase of
Th17 cells after the exposure to the antigen, but only half of the low responders presented
a similar behavior [22]. Thus, analysis of Th17 could be considered a useful biomarker
correlated with an effective neutralizing antibody response for evaluating the efficacy of
the vaccine over time. To this aim, we also implemented a prognostic tool based on fuzzy
logic and artificial intelligence designed for this specific control task. By applying fuzzy
logic, we were able to confirm this result. Indeed, in real life, things are not either white
or black, but most are grey, thus in many practical situations, it is convenient to consider
intermediate logical values, such as in these biological events that show variability among
individuals. Fuzzy logic by intrinsic nature is not crisp, and therefore it weights, by means
of specific membership function, the influence of several factors such as the Th17 and NT
antibody titer amount for classification based on a priori knowledge.

Analyzing the virus-specific CD4+ and CD8+ T-cell immune response six months
after vaccination, we noticed a variable profile both for CD4+ and CD8+ central memory
lymphocytes, with a modest but not significant (p > 0.05) increase of the specific effector
memory cells. Only 35% and 40% of the subjects revealed a 1% increase of CD4+ and CD8+

cells, respectively. We observed a clear heterogeneity of the T-cell-mediated response after
BNT162b vaccination. These data were also supported by the low expression of interferon-γ
non-correlated with the induced Spike cellular response in vaccinated subjects.

These data provide evidence that despite the antibody decline six months after
BNT162b2 mRNA vaccination, the memory B-cell persists, and transitional B-cells could
have a role together with Th17 cells in the proliferation and differentiation of B-lymphocytes.
On the contrary, in this limited number of cases, a heterogeneity of CD4+ and CD8+ ef-
fector memory cell response to the Spike protein stimulation leads to hypothesize that in
particular CD8+ cells do not represent the first class of defense against SARS-CoV-2 six
months after mRNA vaccination. Humoral response against SARS-CoV-2 represents a valid
correlate of protection; however, the T-cell response is also important, particularly for those
who have a low antibody response and need to compensate for this shortage. Therefore,
estimation of immunity over time is fundamental to improve the vaccine, evaluate the
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variables that are useful to determine the real need for other boosts to protect people, and
possibly develop an adequate time schedule of vaccination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10020171/s1, Figure S1: Representative gating strategies
for CD4+ and CD8+ cell populations by multiparametric flow cytometry, Figure S2: Representative
gating strategies for CD19+, CD20+ B cell populations by multiparametric flow ccytometry.
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